CHROMATIC NUMBERS OF CAYLEY GRAPHS ON $\mathbb Z$ AND RECURRENCE

Y. KATZNELSON

Dedicated to the memory of Paul Erdős

Received February 7, 2000

In 1987 Paul Erdős asked me if the Cayley graph defined on \mathbb{Z} by a lacunary sequence has necessarily a finite chromatic number. Below is my answer, delivered to him on the spot but never¹published, and some additional remarks. The key is the interpretation of the question in terms of return times of dynamical systems.

1. The Cayley graph \mathbb{Z}_{Λ}

1.1. Let $\Lambda \subset \mathbb{N}$. By definition, the Cayley graph \mathbb{Z}_{Λ} is the graph whose vertices are the integers, and whose edges are the pairs $\{(n, n+\lambda): n \in \mathbb{Z}, \lambda \in \Lambda\}$.

The sequence $\Lambda = \{\lambda_j\}$ is lacunary (with parameter ρ) if $\lambda_{j+1}/\lambda_j \ge \rho > 1$.

The chromatic number $\chi(\Lambda) = \chi(\mathbb{Z}_{\Lambda})$ is the smallest number of colors needed to color \mathbb{Z}_{Λ} such that vertices connected by an edge have different colors.

For $\tau \in \mathbb{T}$ we denote by $||\tau||$ the distance in \mathbb{T} of τ to $0 \in \mathbb{T}$.

Theorem 1.1. If Λ is lacunary then $\chi(\Lambda) < \infty$.

The theorem is an immediate corollary of the following theorem:

¹ An account did appear recently in chapter 5 of [4].

Mathematics Subject Classification (2000): 05C15, 37B20

Theorem 1.2. For every $\rho > 1$ there exists an $\varepsilon = \varepsilon(\rho) > 0$ such that for any lacunary Λ with parameter ρ there exist $\alpha \in \mathbb{T}$ such that $\|\lambda \alpha\| > \varepsilon$ for all $\lambda \in \Lambda$.

Proof of Theorem 1.1. Given ρ , divide \mathbb{T} into M equal arcs $\{I_k\}$, with $M\varepsilon > 1$. Using the α given by Theorem 1.2, set C(n) = j if $n\alpha \in I_j$.

1.2. The proof of Theorem 1.2 is immediate if ρ is big, say $\rho \geq 5$. Set $\varepsilon = 1/4$ and, given $A = \{\lambda_j\}$, write $A_j = \{\alpha : ||\lambda_j \alpha|| \geq 1/4\}$. The set A_j is the union of λ_j arcs of length $1/2\lambda_j$. Each component of A_j contains two full components of A_{j+1} . It follows that $\cap_j A_j$ contains a Cantor set.

For ρ close to 1 the proof needs to be adapted slightly, and we defer it to the following subsection. As I found out later, the question whether or not (a variation of) the statement of Theorem 1.2 is valid for all $\rho > 1$ was raised by Erdős in [2] and answered independently in [1] and [3].

For the purpose of proving Theorem 1.1 we can get around this case by replacing the circle by the d-dimensional torus. Let d be an integer big enough to guarantee $\rho^d \geq 5$. Write $\Lambda_k = \{\lambda_{k+jd}\}_{j=0}^{\infty}$, $k = 1, \ldots, d$. Each Λ_k is lacunary with ratio ≥ 5 and we can choose α_k such that $\|\lambda \alpha_k\| \geq 1/4$ for $\lambda \in \Lambda_k$.

We now divide \mathbb{T}^d into 5^d boxes B_j by dividing the coordinate circles into five equal arcs each, and set C(n) = j if $n(\alpha_1, \dots, \alpha_d) \in B_j$.

1.3. Back to Theorem 1.2. Given any sequence Λ and any L > 1, we denote $\Lambda_n = \Lambda \cap [L^n, L^{n+1}]$ and $m = m(\Lambda, L) = \sup_n \#\{\Lambda_n\}$. If $\Lambda = \{\lambda_j\}$ is lacunary with parameter $\rho > 1$, then $\rho^m < L$ so that $m = m(\Lambda, L) < \infty$ for all L. Conversely, if $m(\Lambda, L) < \infty$ for some L then Λ is a finite union of lacunary sequences.

Proof of Theorem 1.2. We propose to prove a little more than is claimed in the theorem, namely the following statements:

Claim 1. For every $\rho > 1$ there exists² an $\varepsilon = \varepsilon(\rho) > 0$, such that for any lacunary Λ with parameter ρ there exist $\alpha \in \mathbb{T}$ such that $\|\lambda\alpha\| > \varepsilon$ for all $\lambda \in \Lambda$.

Claim 2. If Λ is a finite union of lacunary sequences then the set

$$A(\Lambda) = \{\alpha : \exists \varepsilon \text{ such that for all } \lambda \in \Lambda \ \|\lambda \alpha\| > \varepsilon \}$$

has Hausdorff dimension 1.

 $^{^2}$ For ρ close to 1 we have $\varepsilon(\rho) > (\rho-1)^2 \log^{-2}(\rho-1).$

Write $\rho = 1 + 1/p$; we focus now on the case ρ close to 1, that is, large p. For the proof of Claim 1 start with an integer L such that $L \approx 4p \log p$. Notice that, as $\rho^{(3/2)p \log p} \approx p^{3/2} >> L$, we have $m(\Lambda, L) < (3/2)p \log p \approx 3L/8$. If we replace L by its square, m only doubles; thus we can have the ratio m/L as small as we want by replacing L by a (large) power thereof.

Denote by \mathcal{P}_k the partition of \mathbb{T} by the roots of unity of order L^{k+1} . An atom I_k of \mathcal{P}_k is Λ -proper if for any j < k, any $\lambda \in \Lambda_j$, and any $t \in I_k$ we have $\|\lambda t\| > 1/2L^2$. Denote by G_k the union of the Λ -proper atoms of \mathcal{P}_k .

We propose to show that every $I_k \in \mathcal{P}_k$ which is Λ -proper contains at least L-4m Λ -proper elements of \mathcal{P}_{k+1} .

For $\lambda \in A_k$ write $B_{\lambda} = \{t: ||\lambda t|| < 1/2L^2\}$. The periodicity of B_{λ} is λ^{-1} , bigger than $L^{-(k+1)}$, so that $B_{\lambda} \cap I_k$ consists of at most two arcs, each of length bounded by $\lambda^{-1}L^{-2} \leq L^{-(k+2)}$, and hence can have nontrivial intersection with at most two \mathcal{P}_{k+1} sub-intervals of I_k .

Now observe that any point in $\bigcap G_k$ answers Claim 1 with $\varepsilon = 1/2L^2$. Also, by taking larger L the ratio $m/L \to 0$ and the dimension of $\bigcap G_k$ is as close to 1 as we want. Since $A(\Lambda)$ contains all of these, this proves Claim 2.

2. Recurrence

2.1. What we have shown in the previous section is that a lacunary sequence is not recurrent (see the definition below) for translations on circles or higher dimensional tori. Instead of a translation on the circle or the d-dimensional torus we can use a compact system (X, ρ, T) , that is, a homeomorphism T on a compact metric space (X, ρ) . The following theorem shows that this level of generality gives a complete characterisation of finite chromatic number.

Theorem 2.1. $\chi(\Lambda) < \infty$ if, and only if, there exists a compact metric space (X, ρ) , a homeomorphism T of X, and some $\varepsilon > 0$ such that for all $x \in X$ and $\lambda \in \Lambda$

$$\rho(x, T^{\lambda}x) \ge \varepsilon.$$

Proof. The "if" part is exactly as above: partition X into sets B_j of diameter less than ε , choose $x_0 \in X$, and define C(n) = j when $T^n x_0 \in B_j$.

For the "only if" part we do the following construction: Let $C \in \{1, ..., d\}^{\mathbb{Z}}$ be a d-coloring of \mathbb{Z} , appropriate for \mathbb{Z}_A . Let X_C be the closure in $\{1, ..., d\}^{\mathbb{Z}}$ of the set of translates of C: $\{C_m(n) = C(m+n)\}_{m \in \mathbb{Z}}$. Remember that the metric in $\{1, ..., d\}^{\mathbb{Z}}$ is defined by

$$\rho(\{a_n\}, \{b_n\}) = 1/(1 + \max\{k : |j| \le k \Rightarrow a_j = b_j\}).$$

Define T to be the translation: $T(\{a_n\}) = \{a_{n+1}\}.$ For $x \in X_C$ and any $\lambda \in \Lambda$, $x_{\lambda} = (T^{\lambda}x)_0 \neq x_0$, and $\rho(x, T^{\lambda}x) = 1$.

Recall that the system (X, ρ, T) is minimal if any nonempty, T-invariant, closed subset of X coincides with X. Conditions equivalent to minimality are:

- **a.** The T-orbit of any $x \in X$ is dense in X.
- **b.** If $O \subset X$ is open, then $\cup T^nO = X$. Since X is assumed compact, a finite number of T^nO 's is sufficient to cover X.

Definition 1. A sequence $\Lambda \subset \mathbb{N}$ is recurrent for a system (X, ρ, T) if for any open set $O \subset X$ there exist $\lambda \in \Lambda$ such that $O \cap T^{-\lambda}O \neq \emptyset$.

 Λ is topologically recurrent if it is recurrent for every minimal topological system. We denote the class of all topologically recurrent Λ 's by $T\mathcal{R}$.

Remark. The definitions of minimality and recurrence make no use of the metric ρ but for the fact that it defines the topology. If we have a homeomorphism T of a compact space X, and a non-recurrent sequence Λ , i.e., an open $O \subset X$ such that $O \cap T^{-\lambda}O = \emptyset$ for all $\lambda \in \Lambda$, we obtain as above that $\chi(\Lambda) < \infty$ and by Theorem 2.1 there exists a metric system³ for which Λ is non-recurrent. It follows that checking recurrence only on *metric* systems is equivalent to checking it for all compact systems.

Theorem 2.1 says that $\chi(\Lambda) = \infty$ if, and only if, $\Lambda \in \mathcal{TR}$.

2.2. Bohr recurrence. Translations on circles or higher dimensional tori are not just homeomorphisms, they are isometries. Conversely, a minimal topological system (X, ρ, T) in which T is an isometry⁴, is isomorphic⁵ to a translation on a compact monothetic group, that is, a group that has a dense subgroup isomorphic to \mathbb{Z} .

If \mathbb{G} is a compact monothetic group and g_0 generates a dense subgroup, every character γ on \mathbb{G} is completely determined by the value $\langle \gamma, g_0 \rangle$. The dual $\hat{\mathbb{G}}$ can therefore be identified with the set of $\langle \gamma, g_0 \rangle$, which is a subgroup of \mathbb{T}_d , the circle⁶ endowed with the discrete topology.

Monothetic groups can thus be characterized as duals of subgroups of \mathbb{T}_d . Equivalently they are factor groups of \mathbb{B} , the Bohr compactification of \mathbb{Z} , which is the dual group of the entire \mathbb{T}_d .

³ It is the factor system obtained by taking the topology spanned by $\{T^nO\}$.

⁴ It suffices to assume that $\{T^n\}_{n\in\mathbb{Z}}$ is equicontinuous, since then T is an isometry for a metric ρ' equivalent to ρ .

⁵ Here is the idea of the proof. Define addition on X as follows: take an arbitrary $x_0 \in X$, denote $x_n = T^n x_0$, define $x_n + x_m = x_{n+m}$ and extend the operation to $X \times X$ by continuity.

⁶ We identify implicitly the group of complex numbers of modulus 1 with $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.

Definition 2. Λ is *Bohr recurrent*, denoted $\Lambda \in \mathcal{BR}$, if it is recurrent for every translation on the Bohr group \mathbb{B} .

Since recurrence for a system implies (trivially) recurrence for any factor thereof, Bohr recurrence is equivalent to recurrence for all minimal *isometries*.

2.3. The recurrence properties, or chromatic number, of a sequence Λ depend on its arithmetic richness rather than its size. For example: $\chi(2\mathbb{Z}) = \infty$ while $\chi(2\mathbb{Z}+1)=2$. A striking albeit trivial example of the effect of arithmetic structure rather than size is: let $E \subset \mathbb{Z}$ be infinite, and $\Lambda = E - E = \{e_1 - e_2 : e_j \in E\}$. Then $\chi(\Lambda) = \infty$.

The "arithmetic richness" needed for Bohr recurrence is given by the following lemma.

Lemma 2.1. $\Lambda \in \mathcal{BR}$ if, and only if, for any finite subset $\{\alpha_j\}_1^N \subset \mathbb{T}$ and any $\varepsilon > 0$ there exist $\lambda \in \Lambda$ such that $\|\lambda \alpha_j\| < \varepsilon$ for every $j \in [1, ..., N]$.

Proof. Consider the translation by $g_0 \in \mathbb{B}$. Λ is recurrent for this translation if (and only if) given any neighborhood U of the identity in \mathbb{B} , there exists $\lambda \in \Lambda$ such that $\lambda g_0 \in U$.

A basis of the topology of $\mathbb B$ at the identity consists of sets defined as follows: $V = \{g: |\langle \gamma_j, g \rangle - 1| < \varepsilon\}$ where $\{\gamma_j\}$ is a finite set of characters and $\varepsilon > 0$. Define α_j by: $e^{2\pi i \alpha_j} = \langle \gamma_j, g_0 \rangle$. The condition $|\langle \gamma_j, \lambda g_0 \rangle - 1| < \varepsilon$ is equivalent to $\|\lambda \alpha_j\| < \varepsilon$.

Definition 3. Λ is Bohr(n) recurrent if it is recurrent for every translation of \mathbb{T}^n . We denote the class of all such Λ 's by $\mathcal{BR}(n)$.

The criterion for $\mathcal{BR}(n)$ is the same as that of Lemma 2.1 except that the size of the set $\{\alpha_i\}$ is limited to n.

2.4. The conditions that define $\mathcal{BR}(n)$ get stricter as n increases; it is clear that $\mathcal{BR}(n) \subset \mathcal{BR}(n-1)$ and we are about to see that the inclusion is proper.

Lemma 2.2. Assume $\Lambda \in \mathcal{BR}(n-1)$. If $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{T}^n$ is a generator, then the set $\{\lambda \alpha : \lambda \in \Lambda\}$ intersects every closed infinite subgroup of \mathbb{T}^n .

Conversely, if $V \subset \mathbb{T}^n$ is open and intersects every closed infinite subgroup of \mathbb{T}^n and if α is a generator of \mathbb{T}^n , then

(2.1)
$$\Lambda = \{\lambda : \lambda \alpha \in V\}$$

is in $\mathcal{BR}(n-1)$.

Proof. Assume $\Lambda \in \mathcal{BR}(n-1)$, and $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{T}^n$ a generator. Let G be an infinite closed subgroup⁷ of \mathbb{T}^n , and let G^{\perp} be the subgroup of \mathbb{Z}^n which is trivial on G (its "annihilator"). Let $\mathbf{b}_k = (b_{k,1}, \dots, b_{k,n}), \ k = 1, \dots, m < n$, be a basis for G^{\perp} , so that $G = \{\tau : \langle \mathbf{b}_k, \tau \rangle = 1, 1 \le k \le m\}$.

Write $\beta_k = \sum b_{k,j}\alpha_j$, k = 1, ..., m. Since $\Lambda \in \mathcal{BR}(n-1)$, given $\varepsilon > 0$, there exist $\lambda \in \Lambda$ such that $\|\lambda \beta_k\| < \varepsilon$ for all k, which means $\|\sum b_{k,j}\lambda \alpha_j\| < \varepsilon$, i.e., $|\langle \mathbf{b}_k, \lambda \alpha \rangle - 1| < \varepsilon$ for all k, and $\lambda \alpha$ is ε -close to G. This being true for all $\varepsilon > 0$, we obtain $\{\lambda \alpha : \lambda \in \Lambda\} \cap G \neq \emptyset$.

Conversely, let $V \subset \mathbb{T}^n$ and $\alpha = (\alpha_1, \dots, \alpha_n)$ be as described in the statement, and let Λ be defined by (2.1).

Let $\{t_k\}_1^{n-1} \subset \mathbb{T}$. Choose a maximal subset of the t's such that these, along with $\{\alpha_j\} \cup \{1\}$, are rationally independent. Rearranging the t's, we may assume that (for some integer $s \in [0, n-1]$) $\{t_j\}_{j=s+1}^{n-1} \cup \{\alpha_j\} \cup \{1\}$ is rationally independent, while each $t_j, j=1,\ldots,s$, is a rational combination of these. With an appropriate (common denominator) N we have for $j=1,\ldots,s$, and integer coefficients $a_{j,k}, b_{j,l}, N_j$,

(2.2)
$$Nt_j = \sum_{k=1}^n a_{j,k} \alpha_k + \sum_{l=s+1}^{n-1} b_{j,l} t_l + N_j.$$

Denote $\mathbf{a}_j = (a_{j,1}, \dots, a_{j,n})$, let $D \subset \mathbb{Z}^n$ be the subgroup generated by $\{\mathbf{a}_j\}_{j=1}^s$, and $D^{\perp} \subset \mathbb{T}^n$ its annihilator. The connected component D_0^{\perp} of the identity in D^{\perp} is closed and non-trivial, and by our assumption has a non empty intersection with V. Choose a point $(c_1, \dots, c_n) \in V \cap D_0^{\perp}$; let $(c_1^*, \dots, c_n^*) \in D_0^{\perp}$ be such that $N(c_1^*, \dots, c_n^*) = (c_1, \dots, c_n)$.

be such that $N(c_1^*, \ldots, c_n^*) = (c_1, \ldots, c_n)$. The independence of $\{t_j\}_{j=s+1}^{n-1} \cup \{\alpha_j\} \cup \{1\}$ implies that for every $\varepsilon_1 > 0$ there exist integers λ_1 such that

$$(2.3) \|\lambda_1 t_j\| < \varepsilon_1, \quad s+1 \le j \le n-1 \text{ and } \|\lambda_1 \alpha_j - c_j^*\| < \varepsilon_1, \quad 1 \le j \le n.$$

Given $\varepsilon > 0$, if ε_1 is sufficiently small, then (2.3) implies that $\lambda = N\lambda_1 \in \Lambda$ and

$$\|\lambda t_k\| < \varepsilon, \quad 1 \le k < n.$$

The sequences defined by (2.1) are clearly not in $\mathcal{BR}(n)$ when V is at a positive distance from the identity. Any sequence $\Lambda \in \mathcal{BR}(n-1) \setminus \mathcal{BR}(n)$ is contained in one defined by (2.1) for an appropriate V and α . In fact if the $\mathcal{BR}(n)$ condition fails for α , one can take for V any neighborhood of $\Lambda\alpha$ which stays away from the identity.

⁷ hence of positive dimension

Thus⁸, if $\alpha_1, \ldots, \alpha_n$ are rationally independent mod 1, and we define

(2.5)
$$\Lambda = \{\lambda : \min_{j} \|\lambda \alpha_{j} - 1/2\| < .01\}$$

then $\Lambda \in \mathcal{BR}(n-1) \setminus \mathcal{BR}(n)$.

The following lemma is a restatement of Lemma 2.2 for Λ -orbits in \mathbb{T}^{n+N} when $\Lambda \in \mathcal{BR}(n)$. The proof above applies essentially verbatim,

Lemma 2.3. Assume $\Lambda \in \mathcal{BR}(n)$. If $\alpha = (\alpha_1, \dots, \alpha_{n+N}) \in \mathbb{T}^{n+N}$ is a generator, then the set $\{\lambda \alpha : \lambda \in \Lambda\}$ intersects every closed N-dimensional subgroup of \mathbb{T}^{n+N} .

Conversely, if $V \subset \mathbb{T}^{n+N}$ is open and intersects every closed N-dimensional subgroup of \mathbb{T}^{n+N} and if α is a generator of \mathbb{T}^{n+N} , then

(2.6)
$$\Lambda = \{\lambda : \lambda \alpha \in V\}$$

is in $\mathcal{BR}(n)$.

3. Universal sequences

For $\Lambda \subset \mathbb{N}$ write $\Lambda_{[1,N]} = \Lambda \cap [1,\ldots,N]$.

Lemma 3.1.
$$\chi(\Lambda) = \sup_{N \to \infty} \chi(\Lambda_{[1,N]}).$$

Proof. Clearly $\chi(\Lambda) \ge \sup_{N \to \infty} \chi(\Lambda_{[1,N]})$. Assume $\chi(\Lambda_{[1,N]}) \le k$ for all N. Let $c_N \in \{1,\ldots,k\}^{\mathbb{Z}}$ be an appropriate coloring for $\Lambda_{[1,N]}$ and let C be a limit point of c_N in $\{1,\ldots,k\}^{\mathbb{Z}}$. C is an appropriate coloring for Λ .

Proposition 3.1. Let $\Lambda_j \subset [1, L_j]$ be finite sequences of positive integers, with uniformly bounded chromatic number, say $\chi(\Lambda_j) \leq k$. Let $m_j \geq 5L_j$, and $M_j = \prod_{l < j} m_l$. Write $\Lambda = \bigcup_{j=1}^{\infty} M_j \Lambda_j$. Then $\chi(\Lambda) \leq k^2$.

Proof. By Lemma 3.1 it suffices to show that $\chi(\bigcup_{j=1}^N M_j \Lambda_j) \leq k^2$ for all N. In what follows we take as colors the elements of the cyclic group $\mathbb{Z}_k = \mathbb{Z}/k\mathbb{Z}$.

We express any integer $n \in \mathbb{Z}$ (uniquely) in the form, referred to as the standard N-expansion, $\sum_{j=1}^{N+1} a_j M_j$ where $0 \le a_j < m_j$ for j = 1, ..., N and $a_{N+1} \in \mathbb{Z}$. Let $c_j \in \mathbb{Z}_k^{\mathbb{Z}}$ be an appropriate coloring for Λ_j , let w_j be a word of length m_j in c_j , j = 1, ..., N, and write $\tilde{C}(n) = \sum_{j=1}^{N} w_j(a_j)$.

The examples given by 2.5 are not only in $\mathcal{BR}(n-1)$, they have the stronger property that for any $\beta = (\beta_1, \dots, \beta_{n-1})$, the set $\{\lambda \beta : \lambda \in \Lambda\}$ is dense in \mathbb{T}^{n-1} .

 \tilde{C} is "almost" an appropriate coloring for $\bigcup_{j=1}^N M_j \Lambda_j$; if n_1 and n_2 have all but one, say j=s, of the first N digits equal, and if $n_2-n_1\in M_s\Lambda_s$, then $\tilde{C}(n_2)\neq \tilde{C}(n_1)$ since w_s assumes distinct values on the corresponding coefficients while all the other readings are identical. In general, if $\lambda\in\Lambda_r$ and if the coefficient a_r of n is smaller than $.8m_r < m_r - L_r$, then n and $n+M_r\lambda$ do have all the coefficients but a_r equal and by the previous remark \tilde{C} assumes different values on the two. If we set $I_N = \sum_{j=2}^N i_j M_j$ with $i_j \approx \frac{1}{2} m_j$, then for any n and any $\lambda\in\bigcup_{j=1}^N M_j \Lambda_j$ one at least of the pairs $n,n+\lambda$ and $n+I_N,n+I_N+\lambda$ fits the description above and it follows that $C(n)=(\tilde{C}(n),\tilde{C}(n+I_N))$ is an appropriate coloring, with no more than k^2 colors, for $\bigcup_{j=1}^N M_j \Lambda_j$.

Definition 1. If Λ and Λ_1 are sequences of positive integers, we say that Λ scale-contains Λ_1 if for some integer $m, \Lambda \supset m\Lambda_1$.

We can take as $\{\Lambda_j\}$ an arrangement of all the finite sequences of chromatic number bounded by k; the proposition above implies:

Theorem 3.1. Given $k \in \mathbb{N}$, there exist a sequence Λ of chromatic number bounded by k^2 which is k-universal, i.e. scale-contains every finite sequence of chromatic number bounded by k.

4. Is $\mathcal{BR} = \mathcal{TR}$?

Theorem 1.1 is equivalent to the statement that lacunary sequences are not topologically recurrent, and we proved more, namely that they are not even in $\mathcal{BR}(1)$.

Denote $\tilde{\chi}(n) = \inf \chi(\Lambda), \Lambda \in \mathcal{BR}(n)$.

Theorem 4.1. The statement $\mathcal{BR} \neq \mathcal{TR}$ is equivalent to $\tilde{\chi}(n) = O(1)$.

Proof. Assume $\tilde{\chi}(n) = O(1)$. Let $\Lambda_n \in \mathcal{BR}(n)$ with $\chi(\Lambda_n) < 2\tilde{\chi}(n)$. Let $\widetilde{\Lambda}_n$ be $\Lambda_n \cap [1, N_n]$ with N_n large enough to guarantee that for for all $(\alpha_1, \dots, \alpha_n) \in \mathbb{T}^n$ the distance of $\widetilde{\Lambda}_n(\alpha_1, \dots, \alpha_n)$ to 0 is less than 1/n. Notice that the condition remains valid if we replace $\widetilde{\Lambda}_n$ by any integer multiple thereof. Now apply Proposition 3.1; the sequence obtained is in $\mathcal{BR} \setminus \mathcal{TR}$.

The opposite implication is obvious.

Remark. The question can be stated in terms of finite sets only, as is apparent from the proof above. If we denote by $\widetilde{\mathcal{BR}}(n)$ the set of all *finite*

sequences Λ such that for all $(\alpha_1, \ldots, \alpha_n) \in \mathbb{T}^n$ the distance of $\Lambda(\alpha_1, \ldots, \alpha_n)$ to 0 is less than 1/n, and set

$$\chi^*(n) = \inf_{\Lambda \in \widetilde{\mathcal{BR}}(n)} \chi(\Lambda)$$

then the boundedness of $\chi^*(n)$ is equivalent to $\mathcal{BR} \neq \mathcal{TR}$.

References

- [1] B. DE MATHAN: Numbers contravening a condition in density modulo 1, *Acta Math. Hungar.*, **36** (1980), 237–241.
- [2] P. Erdős: Problems and results on diophantine approximation (II), Répartition modulo 1, Lecture Notes in Mathematics, (Springer-Verlag, Berlin...) 475 (1975), 89–99.
- [3] A. D. POLLINGTON: On the density of sequence $\{n_x\xi\}$, Illinois J. Math., 23 (1979), 511–515.
- [4] B. Weiss: Single orbit dynamics, CBMS Regional Conference Series in Mathematics, 95 (2000).

Y. Katznelson

Department of Mathematics Stanford University Stanford, CA, USA

katznel@math.stanford.edu